Investigating Statistical Mechanics of Complex Supply Chain Networks under Potential Risks

PHYS597A Project, Spring 2007

Presented by
Satama Sirivunnabood
Department of Industrial and Manufacturing Engineering
Supply Chain Network
Risks in Supply Chain Network

- Delay of raw materials
- Disruption risk: employee strike, politics, or hurricanes
- Information System failures
- Demand forecast risk
- Intellectual property risk
- Procurement risk: fluctuating prices of raw materials
- Receivable risk: unable to get the money from customers
- Inventory risk: uncertainty in supply
- Capacity risk: machine breakdown or under utilization
Interesting Questions

- What is the most appropriate evolving model for constructing a complex supply chain network?
- How can we model the risks in a complex supply chain network?
- What are the criteria should we use to determine the robustness of a supply chain network?
- How can we improve the network robustness with the least redundancy?
Evolving model for A Supply Chain Network

- Intuitively the behavior of the actual supply chain network is similar to the Barabási and Albert model
 - Network growth
 - Preferential attachment

- However the probability of connection between a newly added node and the other existing node must be changed
 - \(P(k_i) = k_i / \Sigma k_i \rightarrow P(k_j) = (k_i + 1) / (\Sigma k_i + \Sigma N) \)
Evolving model for A Supply Chain Network

- Also there are some additional features for the supply chain network
 - Three types of node: supplier, manufacturer, and customer nodes
 - Adding supplier node at every year, manufacturer node every 6 months, and customer node every month
 - Attachment constraints: customer to manufacturer, manufacturer to supplier, and supplier to supplier
Evolving model for A Supply Chain Network

1st echelon

Supplier

2nd echelon

Manufacturer

3rd echelon

Customer

Customer

Customer

Customer

Customer
Statistical Mechanics:

- Total number of nodes
- Largest Connected Component (LCC)
- Connectivity ratio = LCC / Total number of nodes
- Average degree
- Average path length / inverse geodesic length
- Degree Distribution
Simulation of A Complex Supply Chain Network under Risk

- Simulation of the complex supply chain network using the proposed model
- The employee strike risk is selected and inserted into the model
- Parameters of the employee strike risk:
 - Probability of strike for each node is 0.05 during 90 days
 - The duration of a strike is a triangular distribution with parameter (1,3,10) days
 - The day where the strike begins is a uniform distribution between 1 and 90
- The simulations were done for both model without risk and under risk for 10 years of simulation time
Simulation: The basic model
Simulation: The model under risk

- Three types of model under risk
 - 1-attaching edge
 - 2-attaching edges (redundancy)
 - 3-attaching edges (high redundancy)

<table>
<thead>
<tr>
<th></th>
<th>Number of edges attached</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Size</td>
<td>143</td>
</tr>
<tr>
<td>LCC</td>
<td>110.2</td>
</tr>
<tr>
<td>Connectivity Ratio</td>
<td>0.771</td>
</tr>
<tr>
<td>Average Degree</td>
<td>1.407</td>
</tr>
<tr>
<td>Average Inverse Geodesic Length</td>
<td>0.177</td>
</tr>
</tbody>
</table>
Simulation: Largest Connected Component

Onyx Team
Conclusions & Future Works

- The simulations were done to investigate the statistical mechanics and robustness of the supply chain network under the potential risk.
- The results indicate that adding redundancy more than 2 attaching edges does not improve the network robustness any further.
- Some future works:
 - Agent-based systems for complex network modeling
 - How can we characterization of the potential risks
 - Design of topology for more robust networks